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1 Power calculations

We consider three types of local alternatives, where the xg,i are correlated across peers. In the

terminology of Manski (1993) these are (i) endogenous effects, (ii) contextual effects, and (iii)

correlated effects. We begin by providing a closed-form expression for the variance of qHO
r under

the null. We then calculate br under the alternatives (i)–(iii). Taken together, these results then

yield the non-centrality parameter in the limit distribution of tHO
r . This is then used to assess

power.

Throughout this section we focus attention on settings where peer groups do not overlap, which

makes the final expressions more easily interpretable. We also enforce that E0(x4
g,i) = 3σ4

g , which

yields a slightly shorter variance formula but is in no way essential to our findings. The underlying

derivations, collected further down in this Appendix, do not make use of these restrictions.

Variance expression. Under these conditions the variance of qHO
r under the null is equal to

vHO
r := E0(qHO

r qHO
r ) = 2

r∑
g=1

σ4
g E0

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
. (A.1)

We observe that vHO
r is increasing in the size of the urns and decreasing in the size of the peer

groups.

∗Address: Toulouse School of Economics, 1 esplanade de l’Université, 31080 Toulouse, France. E-mail:
koen.jochmans@tse-fr.eu.
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Endogenous effects. In our first set of alternatives correlation among peers arises through

xg,i = ρ x̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2
g),

where −1 < ρ < 1 and the εg,i are independent of the matrixAg. A drifting sequence of this model

towards the null is obtained by setting ρ = %/
√
r for fixed values of %. Such local alternatives

imply that

br = 2
%√
r

r∑
g=1

σ2
g E

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
. (A.2)

Note that this term depends on the design in the same way as does vHO
r and so the same com-

parative statistics apply. Taken together, by an application of Theorem 1, tHO
r will converge in

distribution to a normal random variable with mean µ := limr→∞ br/
√
vHO
r and variance one.

The larger µ (in magnitude) the smaller the probability of a type-II error. The non-centrality pa-

rameter µ is even simpler when errors are homoskedastic and the adjacency matrices A1, . . . ,Ar

are drawn from a common distribution as, in that case,

µ = %

√√√√2E

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
,

showing that power is monotone increasing in the (expected) size of the urns and decreasing in the

size of the peer groups. When variances are urn specific the expression for µ is to be multiplied

by

lim
r→∞

1√
r

∑r
g=1 σ

2
g√∑r

g=1 σ
4
g

≤ 1,

where the bound follows from the Cauchy-Schwarz inequality. Hence, urn-specific variances are

always power reducing. Nonetheless, note that µ > 0, and so our test will detect endogenous-effect

violations with probability approaching one for all possible configurations of urn sizes and peer

groups.

Contextual effects. In our second class of alternatives correlation in peer characteristics

comes from (latent) exogenous effects. Moreover,

xg,i = εg,i +
θ

mg(i)

ng∑
j=1

(Ag)i,j εg,j , εg,i ∼ independent (αg, σ
2
g)
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where θ is a finite constant and, again, the εg,i are independent of the matrix Ag. For drifting

sequences of the form θ = ϑ/
√
r,

br = 2
ϑ√
r

r∑
g=1

σ2
g E

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
, (A.3)

which is the identical to the bias under an endogenous-effect alternative where % = ϑ. Conse-

quently, endogenous and exogenous effects are locally asymptotically equivalent. This finding is

not surprising in light of the similar results on autoregressive and moving-average alternatives in

classical testing problems in the time series literature (see, for example, Godfrey 1981).

Correlated effects. In our third class of alternatives peers are subject to a common additive

shock drawn from a distribution with variance σ2
η, independent of everything else. Thus (condi-

tional on an urn fixed effect) the variance of xg,i is equal to σ2
η + σ2

g while the covariance between

characteristics of peers is σ2
η. In this case, the relevant drifting sequence has σ2

η = ς2/
√
r and we

find that the bias in qHO
r equals

br =
ς2

√
r

r∑
g=1

E

(
(ng − 1)− 1

ng

ng∑
i=1

mg(i)

ng − 1

)
. (A.4)

Because
∑ng

i=1mg(i) ≤ ng(ng − 1), with equality if and only if all individuals in urn g are each

others peers we again have that br > 0 and so our test will be consistent against all correlated-effect

alternatives. When σ2
g = σ2 and the matrices A1, . . . ,Ar are drawn from a common distribution,

the non-centrality parameter in the limit distribution of our test statistic is

µ =
ς2

σ2

E
(

(ng − 1)− 1
ng

∑ng
i=1

mg(i)
ng−1

)
√

2E
(∑ng

i=1
1

mg(i) −
ng
ng−1

) .

Power is again increasing in n1, . . . , nr. The impact of the size of the peers groups on power is

less clear cut, however. On the one hand, larger peer groups reduce the variance and increase µ.

On the other hand, they also reduce the bias in qHO
r , resulting in a loss of power.

2 Proofs

Normalization. Our procedures accommodate fixed effects at the urn level. Moreover, all

sample statistics involved are functions of observations from which the within-urn mean has been
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subtracted and are, thus, invariant to the fixed effects. Therefore, it is without loss of generality

to set all fixed effects equal to zero. This implies that

E0(xg,i xg,j |Ag) = E0(xg,i xg,j) =

 σ2
g if i = j

0 if i 6= j
. (A.5)

This normalization shortens the derivations to follow and is maintained throughout the Appendix.

Proof of Equation (1.2). Under the null of random assignment the bias in the normal

equation is

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

 =

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] xg,i

)
−

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] xg

)
.

We first calculate each of the expectations on the right-hand side and then collect results to arrive

at (1.2).

For the first term on the right-hand side, observe that

E0

( ng∑
i=1

x̄g,[i] xg,i

)
= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j xg,i
mg(i)


= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j E0(xg,j xg,i|Ag)

mg(i)


= 0,

where the first equality uses the definition of x̄g,[i], the second equality iterates expectations, and

the final equality follows from the fact that E0(xg,i xg,j |Ag) = E0(xg,i xg,j) = 0 for all i 6= j and

that (A)i,i = 0.

For the second term on the right-hand side, we have

E0

( ng∑
i=1

x̄g,[i] xg

)
= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j xg,j xg,j′

mg(i)


= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j E0(xg,j xg,j′)

mg(i)


= E0

 1

ng

ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,j)

mg(i)


= σ2

g ,
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using the same arguments as for the first term and the accounting identity
∑ng

j=1(Ag)i,j = mg(i).

Taking differences of the expectations just calculated and summing over the r urns shows that

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

 = −
r∑

g=1

σ2
g ,

which is Equation (1.2).

Proof of Equation (1.3). The within-group estimator is

ρ̂ :=

∑r
g=1

∑ng
i=1 x̄g,[i] x̃g,i∑r

g=1

∑ng
i=1 x̄g,[i] ˜̄xg,[i]

.

The expectation (under the null) of the numerator has already been calculated in (1.2) so it

remains only to calculate the expectation of the denominator, E0(
∑r

g=1

∑ng
i=1 x̄g,[i] ˜̄xg,[i]). Using

the definition of x̄g,[i], it can be written as

r∑
g=1

E0

 ng∑
i=1

 ng∑
j=1

(Ag)i,j xg,j
mg(i)

2− r∑
g=1

E0

 1

ng

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 .

As in the proof of (1.2) we again start by calculating each of the expectations involved and then

collect results.

To calculate the expectation in the first term we expand the square and iterate expectations to

write

E0

 ng∑
i=1

 ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 = E0

 ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i,j′ E0(xg,j xg,j′)

mg(i)2


= E0

 ng∑
i=1

ng∑
j=1

(Ag)
2
i,j E0(x2

g,j)

mg(i)2


= E0

( ng∑
i=1

1

mg(i)

)
σ2
g ,

where we have first exploited (A.5) and then used
∑ng

j=1(Ag)i,j = mg(i) together with the fact

that (Ag)
2
i,j = (Ag)i,j .
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To calculate the expectation in the second term, we proceed in the same way. Doing so reveals

that

E0

 1

ng

 ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j
mg(i)

2 = E0

 ng∑
i=1

ng∑
j=1

ng∑
i′=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(xg,j xg,j′)

ngmg(i)mg(i′)


= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j E0(x2

g,j)

mg(i)mg(i′)

)

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ2
g ,

where we recall that
∑ng

j=1(Ag)i,j (Ag)i′,j = mg(i ∩ i′).

Taking differences of the two expectations just calculated and summing over the r urns yields

E0

 r∑
g=1

ng∑
i=1

x̄g,[i] ˜̄xg,[i]

 =
r∑

g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

σ2
g .

Combined with (1.2) this yields (1.3) on letting r →∞.

The comparative statics in ng and mg(i ∩ j) are immediate. When peer groups do not overlap,

1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

=
1

ng

ng∑
i=1

mg(i ∩ i) +
∑

j 6=img(i ∩ j)
mg(i)2

=
1

ng

ng∑
i=1

(
1

mg(i)
+

∑
j 6=i(Ag)i,j (mg(i)− 1)

mg(i)2

)

=
1

ng

ng∑
i=1

(
1

mg(i)
+
mg(i)− 1

mg(i)

)
= 1,

(A.6)

implying that, in this case the expectation of the denominator simplifies to

r∑
g=1

E0

( ng∑
i=1

1

mg(i)
− 1

)
σ2
g ,

which is indeed decreasing in the mg(i).

When all ng = n and mg(i) = m the above equation becomes

r∑
g=1

( n
m
− 1
)
σ2
g =

(
n−m
m

) r∑
g=1

σ2
g .
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Combined with Equation (1.2) this then yields

plimr→∞ −
m

n−m
,

as claimed. This, after simplication of their formula (and noting that, in their notation L = n and

K − 1 = m), corresponds to the expressions in Caeyers and Fafchamps (2020), as claimed.

Proof of Theorem 1. By independence of the urns the variance of qHO
r is

vHO
r :=

r∑
g=1

E0

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 .

We need to prove that

(i)
qHO
r − br√
vHO
r

d→ N(0, 1), and (ii)

(
sHO
r −

√
vHO
r

)
p→ 0

We handle each of these in turn. As subtracting br amounts to a mere recentering of qHO
r to make

it zero mean it suffices to set br = 0.

To show (i) we verify that the conditions of Lyapunov’s central limit theorem are met. Here,

Lyapunov’s condition is

lim
r→∞

∑r
g=1 E

(∣∣∣∑ng
i=1 x̃g,i

(
x̄g,[i] +

xg,i
ng−1

)∣∣∣2+δ
)

(∑r
g=1 E

((∑ng
i=1 x̃g,i

(
x̄g,[i] +

xg,i
ng−1

))2
)) 2+δ

2

= 0,

for some δ > 0. To do so it is useful to introduce

λgi,j :=

 1/(ng − 1) if i = j

(Ag)i,j/mg(i) if i 6= j

Then we can write

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
=

ng∑
i=1

ng∑
j=1

λgi,j x̃g,i xg,j =

ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)
xg,i xg,j ,

where we use that n−1
g

∑ng
j=1 λ

g
i,j = 1/(ng − 1). Let δ > 0 be fixed. Then, by an application of
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Hölder’s inequality,

E


∣∣∣∣∣∣
ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)
xg,i xg,j

∣∣∣∣∣∣
2+δ
 ≤

E

max
i,j

∣∣∣∣λgi,j − 1

ng − 1

∣∣∣∣
(2+δ)(1+θ)

θ

 θ
1+θ

×

E


 ng∑
i=1

ng∑
j=1

|xg,i xg,j |

(2+δ)(1+θ)



1
1+θ

,

for some θ > 0. The first right-hand side term is finite for any choice of θ because the (re-centered)

weights λgi,j−ng/(ng−1) are bounded. For second right-hand side term, letting ε := 2θ+δ+δθ > 0,

E

 ng∑
i=1

ng∑
j=1

|xg,i xg,j |

2+ε ≤ E

( ng∑
i=1

|xg,i|

)4+2ε
 ≤ E

(( ng∑
i=1

|xg,i|4+2ε

)
ng

)
= O(1)

because maxg maxi E(|xg,i|4+δ) <∞ by assumption. Consequently,

r∑
g=1

E

∣∣∣∣∣
ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)∣∣∣∣∣
2+δ
 = O(r),

and Lyapunov’s condition will follow if we can show that vHO
r grows at the rate r. We may again

write

E

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 = E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)
xg,i xg,j

2 .

Expanding the square inside the expectation, iteration expectations, and recalling that we have

normalized the data to have mean zero yields

E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)
xg,i xg,j

2 = E

( ng∑
i=1

(
λgi,i −

1

ng − 1

)2

E(x4
g,i)

)

+ E

( ng∑
i=1

(
λgi,j −

1

ng − 1

)2

σ4
g

)

+ E

 ng∑
i=1

ng∑
j=1

(
λgi,i −

1

ng − 1

)(
λgj,j −

1

ng − 1

)
σ4
g


+ E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)(
λgj,i −

1

ng − 1

)
σ4
g

 .
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Each of these terms is non-zero and bounded. Hence, vHO
r , which is the sum of all these terms

over the r urns, grows at the rate r and Lyapunov’s condition holds.

To show (ii) it suffices to confirm that

E

 ng∑
i=1

ng∑
j=1

(
λgi,j −

1

ng − 1

)
xg,i xg,j

4
is bounded by a constant independent of g. Expanding the square and iterating expectations

shows that this is indeed the case, as the urn sizes are fixed, the weights are uniformly bounded,

and E(x8
g,i) <∞. The consistency result is then a consequence of Kolmogorov’s strong law. This

completed the proof.

Proof of Equation (A.1). We need to compute the variance of

qHO
r =

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
under the null of random assignment. The calculations here allow for overlap between peer groups

and allow for E0(x4
g,i) =: γ4

g to depend on g (but not on i). Recall that qHO
r has mean zero (under

the null) by construction. By independence of the urns its variance is

vHO
r :=

r∑
g=1

E0

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2
 ,

which on expanding the sum is equal to

r∑
g=1

E0

( ng∑
i=1

ng∑
i′=1

(
x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))(
x̃g,i′

(
x̄g,[i′] +

xg,i′

ng − 1

)))
. (A.7)

We first calculate the expectation of each of the cross-terms in this last expression and then

combine the results.

The first term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] x̄g,[i′]

)
= E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] (xg,i − xg) (xg,i′ − xg)

)
,

and expands as

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg,i′

)
− 2E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg

)
+ E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] x
2
g

)
.
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We now calculate each of the three expectations involved and collect results.

The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg,i′

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(xg,i xg,i′ xg,j xg,j′)

mg(i)mg(i′)


= E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (Ag)i,j E0(x2
g,i x

2
g,j)

mg(i)mg(i)


+ E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (Ag)j,i E0(x2
g,i x

2
g,j)

mg(i)mg(j)


= E0

( ng∑
i=1

1

mg(i)

)
σ4
g + E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ4
g ,

where we have used the definition of x̄g,[i] together with the observation that only summands for

which (i) i = i′ and j = j′ or (ii) i = j′ and j = i′ deliver a non-zero contribution. This follows

from the fact that the xg,i within each urn are independent under the null (conditional on their

common urn fixed effect).

The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] xg,i xg

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

ng∑
k=1

(Ag)i,j (Ag)i′,j′ E0(xg,i xg,j xg,j′ xg,k)

mg(i)mg(i′)ng


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j (Ag)i′,j E0(x2
g,i x

2
g,j)

mg(i)mg(i′)ng


+ E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j (Ag)i′,i E0(x2
g,i x

2
g,j)

mg(i)mg(i′)ng


= E0

( ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j

mg(i)mg(i′)ng

)
σ4
g + σ4

g

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ4
g + σ4

g ,

which follows by the same arguments, now only retaining summands for which (i) j′ = j and

k = i or (ii) j′ = i and k = j.
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The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

x̄g,[i] x̄g,[i′] x
2
g

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

ng∑
k=1

ng∑
k′=1

(Ag)i,j (Ag)i′,j′ E0(xg,j xg,j′ xg,k xg,k′)

mg(i)mg(i′)n2
g


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j (Ag)i′,j E0(x2
g,j x

2
g,k)

mg(i)mg(i′)n2
g


+ 2E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j (Ag)i′,j′ E0(x2
g,j x

2
g,j′)

mg(i)mg(i′)n2
g


= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j (Ag)i′,j

mg(i)mg(i′)

)
σ4
g

+ 2E0

(
1

n2
g

ng∑
i=1

ng∑
i′=1

∑ng
j=1(Ag)i,j

∑ng
j′=1(Ag)i′,j′

mg(i)mg(i′)

)
σ4
g

= E0

(
1

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ4
g + 2σ4

g ,

where, now, three types of summands contribute; they are those for which (i) j′ = j and k′ = k

or (ii) k = j and k′ = j′ or (iii) k = j′ and k′ = j.

Putting everything together shows that E0

(∑ng
i=1

∑ng
i′=1 x̃g,i x̃g,i′ x̄g,[i] x̄g,[i′]

)
is equal to

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ4
g , (A.8)

which deals with the first term in (A.7).

The second term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] xg,i′

(ng − 1)

)
= E0

( ng∑
i=1

ng∑
i′=1

(xg,i − xg) (xg,i′ − xg) x̄g,[i] xg,i′
(ng − 1)

)

= E0

( ng∑
i=1

ng∑
i′=1

xg,i x̄g,[i] x
2
g,i′

(ng − 1)

)

− E0

( ng∑
i=1

ng∑
i′=1

xg,i xg x̄g,[i] xg,i′

(ng − 1)

)

− E0

( ng∑
i=1

ng∑
i′=1

xg x̄g,[i] x
2
g,i′

(ng − 1)

)

+ E0

( ng∑
i=1

ng∑
i′=1

x2
g x̄g,[i] xg,i′

(ng − 1)

)
.
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We evaluate each of these expectations in turn next.

The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i x̄g,[i] x
2
g,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j E0(xg,i x
2
g,i′ xg,j)

mg(i) (ng − 1)

 = 0,

which follows from the fact that (Ag)i,i = 0 so that no combination of indices gives raise to a

summand that has non-zero mean.

The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i xg x̄g,[i] xg,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E0(xg,i xg,i′ xg,j xg,k)

mg(i)ng (ng − 1)


= 2E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,i x

2
g,j)

mg(i)ng (ng − 1)


= 2E0

(
1

(ng − 1)

)
σ4
g ,

where the summands that contribute are those for which (i) i′ = i and k = j or (ii) i′ = j and

k = i.

The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg x̄g,[i] x
2
g,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E0(x2
g,i′ xg,j xg,k)

mg(i)ng (ng − 1)


= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

(Ag)i,j E0(x2
g,i′ x

2
g,j)

mg(i)ng (ng − 1)


= E0

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E0(x4
g,i′) +

∑
j 6=i′(Ag)i,j E0(x2

g,i′ x
2
g,j)

mg(i)ng (ng − 1)

)

= E0

(
1

(ng − 1)

)
γ4
g + E0

(
1

ng(ng − 1)

ng∑
i=1

ng∑
i′=1

mg(i)− (Ag)i,i′

mg(i)

)
σ4
g

= E0

(
1

(ng − 1)

)
γ4
g + σ4

g ;

note that, here, only summands for which k = j contribute, but their contribution depends on

whether (i) i′ = j (which contributes a fourth-order moment) or whether (ii) i′ 6= j (which

contributes a squared second moment).
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The fourth expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g x̄g,[i] xg,i′

(ng − 1)

)
= E0

 ng∑
i=1

ng∑
i′=1

ng∑
j=1

ng∑
k=1

ng∑
k′=1

(Ag)i,j E0(xg,i′ xg,j xg,k xg,k′)

mg(i)n2
g (ng − 1)


= E0

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E0(x4
g,i′) + 3

∑
j 6=i′(Ag)i,j E0(x2

g,i′ x
2
g,j)

mg(i)n2
g (ng − 1)

)

= E0

(
1

ng(ng − 1)

)
γ4
g + 3E0

(
1

ng

)
σ4
g .

Here, again, a fourth-order term arises from the summands where i′ = j = k = k′ while three

different combinations of indices contribute terms involving σ4
g ; these are those where (i) i′ = j

and k = k′ (but not both) or (ii) i′ = k and k′ = j (but not both) or (iii) i′ = k′ and k = j (but

not both).

Combining results yields

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ x̄g,[i] xg,i′

(ng − 1)

)
= E0

(
3

ng
− 2

(ng − 1)
− 1

)
σ4
g − E0

(
1

ng

)
γ4
g , (A.9)

and gives (up to the factor 2) and expression for the second term in (A.7).

The third term and final term that needs to be calculated is

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ xg,i xg,i′

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

(xg,i − xg) (xg,i′ − xg)xg,i xg,i′
(ng − 1)2

)

= E0

( ng∑
i=1

ng∑
i′=1

x2
g,i x

2
g,i′

(ng − 1)2

)

− 2E0

( ng∑
i=1

ng∑
i′=1

x2
g,i xg,i′ xg

(ng − 1)2

)

+ E0

( ng∑
i=1

ng∑
i′=1

xg,i xg,i′ x
2
g

(ng − 1)2

)
.

This again requires calculating three distinct expectations, and we will again take on each in turn.

The first expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g,i x

2
g,i′

(ng − 1)2

)
= E0

( ng∑
i=1

E0(x4
g,i) +

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

(ng − 1)2

)

= E0

(
ng

(ng − 1)2

)
γ4
g + E0

(
ng

(ng − 1)

)
σ4
g .
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The second expectation is

E0

( ng∑
i=1

ng∑
i′=1

x2
g,i xg,i′ xg

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

ng∑
k=1

E0(x2
g,i xg,i′ xg,k)

ng (ng − 1)2

)

= E0

( ng∑
i=1

E0(x4
g,i) +

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

ng (ng − 1)2

)

= E0

(
1

(ng − 1)2

)
γ4
g + E0

(
1

(ng − 1)

)
σ4
g .

The third expectation is

E0

( ng∑
i=1

ng∑
i′=1

xg,i xg,i′ x
2
g

(ng − 1)2

)
= E0

( ng∑
i=1

ng∑
i′=1

ng∑
k=1

ng∑
k′=1

E0(xg,i xg,i′ xg,k xg,k′)

n2
g(ng − 1)2

)

= E0

( ng∑
i=1

E0(x4
g,i) + 3

∑
i′ 6=i E0(x2

g,i x
2
g,i′)

n2
g(ng − 1)2

)

= E0

(
1

ng(ng − 1)2

)
γ4
g + 3E0

(
1

ng(ng − 1)

)
σ4
g .

This then yields

E0

( ng∑
i=1

ng∑
i′=1

x̃g,i x̃g,i′ xg,i xg,i′

(ng − 1)2

)
= E0

(
ng

(ng − 1)

(
1− 2

ng
+

3

n2
g

))
σ4
g

+ E0

(
ng

(ng − 1)2

(
1− 2

ng
+

1

n2
g

))
γ4
g

(A.10)

for the third and final term in (A.7).

Now, collecting results by combining (A.7) with (A.8)–(A.10) yields

vHO
r =

r∑
g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

− (ng − 1)2 + 2

ng(ng − 1)

σ4
g

−
r∑

g=1

E0

(
1

ng

)
γ4
g .

When γ4
g = 3σ4

g and peer groups do not overlap we obtain

vHO
r =

r∑
g=1

E0

(
2

ng∑
i=1

1

mg(i)
− 1− ng + 1

ng − 1

)
σ4
g

by (A.6). This is the variance formula stated in Equation (A.1) in the main text.
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Proof of Equation (A.2). Suppose that

xg,i = ρ x̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2
g),

for some |ρ| < 1. Maintaining our normalization, we set αg = 0 for all urns. Recall that, by

definition,

x̄g,[i] =
1

mg(i)

ng∑
j=1

(Ag)i,j xg,j .

Consequently, collecting variables for urn g in xg := (xg,1, . . . , xg,ng)
′ and εg := (εg,1, . . . , εg,ng)

′

and letting

Gg := D−1
g Ag, Dg := diag(mg(1), . . . ,mg(ng)),

we have the linear system

xg = ρGg xg + εg,

which has reduced form

xg = (Ing − ρGg)
−1 εg =

∞∑
o=0

(
ρoGo

g

)
εg.

Moreover,

xg,i = εg,i + ρ
1

mg(i)

ng∑
j=1

(Ag)i,j εg,j + ρ2 1

mg(i)

ng∑
j=1

ng∑
k=1

(Ag)i,j (Ag)j,k εg,k + · · · . (A.11)

We then obtain

E %√
r

(
xg,i xg,i′ |Ag

)
= E %√

r

(
εg,i εg,i′ |Ag

)
+ E %√

r

εg,i
 %√

r

1

mg(i′)

ng∑
j′=1

(Ag)i′,j′ εg,j′

∣∣∣∣∣∣Ag


+ E %√

r

εg,i′
 %√

r

1

mg(i)

ng∑
j=1

(Ag)i,j εg,j

∣∣∣∣∣∣Ag


+ o(r−1/2).

The expectations on the right-hand side can be worked out. First we have

E %√
r
(εg,i εg,i′)|Ag) =

 σ2
g if i = i′

0 if i 6= i′
,

15



which mimics (A.5). Next we calculate

E %√
r

εg,i
 %√

r

1

mg(i′)

ng∑
j′=1

(Ag)i′,j′ εg,j′

∣∣∣∣∣∣Ag

 =
%√
r

ng∑
j′=1

(Ag)i′,j′ E %√
r
(εg,i εg,j′ |Ag)

mg(i′)

=
%√
r

(Ag)i′,i E %√
r
(ε2
g,i|Ag)

mg(i′)

=
%√
r

(Ag)i′,i
mg(i′)

σ2
g

and, finally,

E %√
r

εg,i′
 %√

r

1

mg(i)

ng∑
j=1

(Ag)i,j εg,j

∣∣∣∣∣∣Ag

 =
%√
r

(Ag)i,i′

mg(i)
σ2
g ,

follows in the same way. Putting everything together then reveals that, up to terms that are

o(r−1/2),

E %√
r

(
xg,i xg,i′ |Ag

)
=

 σ2
g if i = i′

%√
r

(
(Ag)i,i′
mg(i) +

(Ag)i′,i
mg(i′)

)
σ2
g if i 6= i′

. (A.12)

This expression is key in deriving the asymptotic bias, which we turn to next.

The bias is

E %√
r

 r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) =
r∑

g=1

E %√
r

( ng∑
i=1

x̃g,ix̄g,[i]

)
+

r∑
g=1

E %√
r

( ng∑
i=1

x̃g,i xg,i
ng − 1

)
.

We calculate each of the expectations in turn.

First, up to terms that are o(r−1/2),

E %√
r

( ng∑
i=1

x̃g,ix̄g,[i]

)
= E %√

r

( ng∑
i=1

xg,i x̄g,[i]

)
− E %√

r

( ng∑
i=1

xg x̄g,[i]

)

=

 ng∑
i=1

1

mg(i)
− 2

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

σ2
g

%√
r
− σ2

g ,

because,

E %√
r

( ng∑
i=1

xg,i x̄g,[i]

)
= E %√

r

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′ E %√
p
(xg,i xg,i′ |Ag)

mg(i)

)

= E %√
r

( ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)2
+

ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2)

= E %√
r

( ng∑
i=1

1

mg(i)
+

ng∑
i=1

ng∑
i′=1

(Ag)i,i′

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2),
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and

E %√
r

( ng∑
i=1

xg x̄g,[i]

)
= E %√

r

 ng∑
i=1

ng∑
i′=1

(Ag)i,i′
∑ng

k=1 E %√
r
(xg,k xg,i′ |Ag)

mg(i)ng


= E %√

r

 ng∑
i=1

ng∑
i′=1

(Ag)i,i′
(
E %√

r
(x2
g,i′ |Ag) +

∑
k 6=i′ E %√

r
(xg,k xg,i′ |Ag)

)
mg(i)ng


= σ2

g + E %√
r

(
2

ng

ng∑
i=1

ng∑
i′=1

∑
k 6=i′(Ag)i,i′ (Ag)i′,k

mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2)

= σ2
g + E %√

r

(
2

ng

ng∑
i=1

ng∑
i′=1

mg(i ∩ i′)
mg(i)mg(i′)

)
σ2
g

%√
r

+ o(r−1/2),

where we have made extensive use of (A.12).

Second, again up to terms that are o(r−1/2),

E %√
r

( ng∑
i=1

x̃g,i xg,i
ng − 1

)
= E %√

r

( ng∑
i=1

x2
g,i

ng − 1

)
− E %√

r

( ng∑
i=1

xg,i xg
ng − 1

)

= E %√
r

(
ng

ng − 1

)
σ2
g

− E %√
r

(
1

ng − 1

)
σ2
g

− E %√
r

 1

ng(ng − 1)

ng∑
i=1

∑
i′ 6=i

(
(Ag)i,i′

mg(i)
+

(Ag)i,i′

mg(i′)

) %√
r
σ2
g

= σ2
g − E %√

r

(
2

ng − 1

)
%√
r
σ2
g ,

again exploiting (A.12).

Hence, up to terms that are o(
√
r), the bias in the normal equation is

%√
r

p∑
g=1

E %√
r

 ng∑
i=1

1

mg(i)
− 2

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

+

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

− 2

ng − 1

σ2
g .

When peer groups do not overlap we can exploit the fact that

1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

= 1,

ng∑
i=1

ng∑
j=1

(Ag)i,j
mg(i)mg(j)

=

ng∑
i=1

1

mg(i)
,

to reduce the bias expression to

2
%√
r

p∑
g=1

E %√
r

( ng∑
i=1

1

mg(i)
− 1− 1

ng − 1

)
σ2
g + o(

√
r).
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Because the adjacency matrices do not vary with the alternative the subscript on the expectations

operator in this expression can be dropped. This delivers Equation (A.2).

Proof of Equation (A.3). To see that endogenous effects and contextual effects are locally

asymptotically equivalent note that the latter violation of the null is of the form

xg,i = εg,i +
θ

mg(i)

ng∑
j=1

(Ag)i,j εg,j , εg,i ∼ independent (αg, σ
2
g),

for drifting sequences θ = ϑ/
√
r. Our normalization again sets αg = 0 for all urns. Clearly, on

setting % = ϑ, this data generating process coincides with the reduced form in (A.11), up to first-

order. Consequently, it is immediate that E ϑ√
r

(
xg,i xg,i′ |Ag

)
satisfies the expansions in (A.12).

This, then, implies that the asymptotic bias induced by contextual effects, too, is identical.

Proof of Equation (A.4). Consider non-overlapping peer groups. Peers are subject to a

common random effect drawn from a distribution with zero mean and variance σ2
η. Consequently,

E ς2√
r

(
xg,i xg,i′ |Ag

)
= E ς2√

r

(
xg,i xg,i′ |(Ag)i,i′

)
.

For drifting sequences of the form σ2
η = ς2/

√
r this implies that

E ς2√
r

(
xg,i xg,i′ |(Ag)i,i′ = 0

) ς2√
r

+ σ2
g if i = i′

0 if i 6= i′
, E ς2√

r

(
xg,i xg,i′ |(Ag)i,j = 1

)
=

ς2

√
r
,

where, recall, the urn fixed effects have been normalized to zero.

We are now ready to tackle the calculation of

E ς2√
r

 p∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) .

We again proceed by first calculating all expectations involved separately and then combining all

results.

First, we have

E ς2√
r

( ng∑
i=1

x̃g,i x̄g,[i]

)
= E ς2√

r

( ng∑
i=1

xg,i x̄g,[i]

)
− E ς2√

r

( ng∑
i=1

xg x̄g,[i]

)
= E ς2√

r

(ng − 2)
ς2

√
r
− σ2.
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This follows from the observations that

E ς2√
r

( ng∑
i=1

xg,i x̄g,[i]

)
= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j E ς2√
r

(xg,i xg,j |Ag)

mg(i)


= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j E ς2√
r

(xg,i xg,j |(Ag)i,j = 1)

mg(i)


= E ς2√

r

 ng∑
i=1

∑
j 6=i

(Ag)i,j
mg(i)

 ς2

√
r

= E ς2√
r

(ng)
ς2

√
r
,

and that

E ς2√
r

( ng∑
i=1

xg x̄g,[i]

)
= E ς2√

r

 ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j E ς2√
r

(xg,j xg,k|Ag)

mg(i)ng


= E ς2√

r

 ng∑
i=1

ng∑
j=1

(Ag)i,j E ς2√
r

(
x2
g,j |(Ag)j,j = 0

)
mg(i)ng


+ E ς2√

r

 ng∑
i=1

ng∑
j=1

∑
k 6=j

(Ag)i,j (Ag)j,k E ς2√
r

(xg,j xg,k|(Ag)j,k = 1)

mg(i)ng


=

(
ς2

√
r

+ σ2
g

)
+ E ς2√

r

 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)

 ς2

√
r

= 2
ς2

√
r

+ σ2
g ;

here, the last equality exploits the fact that peer groups do not overlap by appealing to (A.6).
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Second, we have

E ς2√
r

( ng∑
i=1

x̃g,i xg,i
(ng − 1)

)
= E ς2√

r

( ng∑
i=1

x2
g,i

(ng − 1)

)
− E ς2√

r

( ng∑
i=1

ng∑
k=1

xg,k xg,i
ng (ng − 1)

)

=
ng

(ng − 1)

(
ς2

√
r

+ σ2

)
− 1

(ng − 1)

(
ς2

√
r

+ σ2

)

− E ς2√
r

 ng∑
i=1

∑
k 6=i

(Ag)i,k E ς2√
r

(xg,k xg,i|(Ag)i,k = 1)

ng (ng − 1)


=

(
ς2

√
r

+ σ2

)
− E ς2√

r

( ng∑
i=1

mg(i)

ng (ng − 1)

)
ς2

√
r
.

Combining results then shows that the bias equals

r∑
g=1

E ς2√
r

(
ng (ng − 1)2 −

∑ng
i=1mg(i)

ng (ng − 1)

)
ς2

√
r
,

as claimed.

Proof of Equation (2.4). By the Frisch-Waugh-Lovell theorem the estimated slope on x̄g,[i]

from a within-group regression of xg,i on x̄g,[i] and xg,i/(ng − 1) can be written as the ratio of the

sum
r∑

g=1

ng∑
i=1

x̄g,[i]

(
x̃g,i − δ̂1

x̃g,i
ng − 1

)
, δ̂1 :=

∑r
g=1

1
(ng−1)

∑ng
i=1 xg,i x̃g,i∑r

g=1
1

(ng−1)2
∑ng

i=1 xg,i x̃g,i
,

to
r∑

g=1

ng∑
i=1

x̄g,[i]

(
˜̄xg,[i] − δ̂2

x̃g,i
ng − 1

)
, δ̂2 :=

∑r
g=1

1
(ng−1)

∑ng
i=1 x̄g,[i] x̃g,i∑r

g=1
1

(ng−1)2
∑ng

i=1 xg,i x̃g,i
.

Although our main interest lies in the numerator, it is easily established that for the denominator

we have that, under the null,

plimr→∞

1

r

r∑
g=1

ng∑
i=1

x̄g,[i]

(
˜̄xg,i − δ̂2

x̃g,i
ng − 1

)
is equal to

lim
r→∞

1

r

r∑
g=1

E0

 ng∑
i=1

1

mg(i)
− 1

ng

ng∑
i=1

ng∑
j=1

mg(i ∩ j)
mg(i)mg(j)

− 1

ng − 1

σ2
g .
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Here we have used that

plimp→∞ δ̂2 = −
limp→∞

1
p

∑p
g=1 E0

(
σ2
g

ng−1

)
limp→∞

1
p

∑p
g=1 E0

(
σ2
g

ng−1

) = −1,

under random assignment. Note that this probability limit is strictly smaller than its counterpart

in the denominator of (1.3).

We now turn to the behavior of the numerator under the null. It is easy to show that

r∑
g=1

ng∑
i=1

x̄g,[i]

(
x̃g,i − δ̂1

x̃g,i
ng − 1

)
=

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) (
1− δ

ng − 1

)
+ op(

√
r),

where

δ := plimr→∞ δ̂1 =
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 E0

(
σ2
g

ng−1

) .
This is Equation (2.4) in the main text. The leading term is equal to our re-centered normal

equation, up to the factor 1 − δ/(ng − 1) in the summand. This result shows that (in large

samples) the multiple-regression strategy of Guryan, Kroft and Notowidigdo (2009) implements

our bias correction to the (numerator of) the simple within-group estimator by leveraging on

variation in urn size.

Proof of (2.5). A short calculation shows that, in (2.4), the large-size urns get assigned the

weight

wn := 1− δ

n̄2 − 1
=

(n̄2 − n̄1) (1− pn)

(n̄1 − 1) + (n̄2 − n̄1) (1− pn)
∈ (0, 1)

while the small-size urns get assigned the weight

− pn
1− pn

ωn < 0.

Then the variance of the modified score equation is

v(n̄1)

(
pn

1− pn
ωn

)2

(1− pn) + v(n̄2)ω2
n pn =

pn
1− pn

ω2
n (v(n̄1) pn + v(n̄2) (1− pn))

and, in the same way, its bias is

pn ωn (b(n̄2)− b(n̄1)).
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Hence, combining results, the non-centrality parameter in the limit distribution takes the form

µ∗ =
√
pn(1− pn)

b(n̄2)− b(n̄1)√
v(n̄1) pn + v(n̄2) (1− pn)

=
b(n̄2)− b(n̄1)√
v(n̄1)
1−pn + v(n̄2)

pn

,

as stated in the main text. Note that the denominator in the expression after the first equality is

not equal to the standard deviation sHO
r . Moreover, because pn ∈ (0, 1),

v(n̄2) pn < v(n̄2) <
v(n̄2)

pn
, v(n̄1) (1− pn) < v(n̄1) <

v(n̄1)

1− pn
,

so that

vHO
r = v(n̄1) (1− pn) + v(n̄2) pn <

v(n̄1)

1− pn
+
v(n̄2)

pn
,

implying that the denominator of µ∗ is always larger than the variance of qHO
r . The numerators

of µ and µ∗ cannot be ranked at this level of generality.

Proof of Equation (3.7). The proof mimics the proof of Equation (1.2). The only difference

arises in the second term where, now,

E0

( ng∑
i=1

x̄g,[i] xg

)
= E0

 1

ng

ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2
g,j)

mg(i)

 = E0

 1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j σ
2
g,j

 ,

from which the result follows.

Proof of Equation (3.8). For urn g write the ng × ng matrix that transforms observations

into deviations from the within-urn mean as

(M g)i,j :=

 1− 1
ng

if i = j

− 1
ng

if i 6= j
.

Then x̃g,i =
∑ng

j=1(M g)i,j xg,j and so

E0(xg,i x̃g,i) = E0(x̃2
g,i) = E0

 ng∑
j=1

ng∑
j′=1

(M g)i,j (M g)i,j′ E0(xg,j xg,j′)

 = E0

 ng∑
j=1

(M g)
2
i,j σ

2
g,j

 .

Let xg := (xg,1, . . . , xg,ng)
′, σ2

g := (σ2
g,1, . . . , σ

2
g,ng)

′, and let ∗ denote the elementwise product

between two matrices of conformable dimension. Then the above equation can be written in
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vector form as E0(xg ∗ x̃g) = E0((M g ∗M g) σ
2
g). Consequently, E0((M g ∗M g)

−1 (xg ∗ x̃g)) = σ2
g

and
ng∑
j=1

((M g ∗M g)
−1)i,j xg,j x̃g,j

is an unbiased estimator of σ2
g,i provided that the matrix (M g ∗M g) is invertible. A calculation

shows that the inverse is well-defined when ng > 2 and that

((M g ∗M g)
−1)i,j =: (Ig)i,j =


ng
ng−2

(
1− 1

ng(ng−1)

)
if i = j

− ng
ng−2

1
ng(ng−1) if i 6= j

.

An unbiased plug-in estimator of the bias in (3.7) thus is

−
r∑

g=1

1

ng

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j

ng∑
j′=1

(Ig)j,j′ xg,j′ x̃g,j′ = −
r∑

g=1

ng∑
i=1

ng∑
j′=1

ωg,j′ xg,j′ x̃g,j′ ,

on verifying that, indeed,

ωg,j′ =
1

ng

ng∑
i=1

∑ng
j=1(Ag)i,j (Ig)j,j′

mg(i)
.

This then immediately also implies the unbiasedness of qHC
r as defined in (3.8). The proof is

complete.

Proof of Theorem 2. The proof is the same as the proof of Theorem 1. It suffices to redefine

λgi,j :=

 ωg,i if i = j

(Ag)i,j/mg(i) if i 6= j
,

and note that these weights are again uniformly bounded.

Proof of Theorem 3. By the Frisch-Waugh-Lovell theorem the estimated slope on x̄g,[i] from

a within-group regression of xg,i on x̄g,[i] and covariate vector wg,i equals∑r
g=1

∑ng
i=1 x̄g,[i] ẋg,i∑r

g=1

∑ng
i=1 x̄g,[i] ˙̄xg,[i]

,

where ẋg,i = x̃g,i − w̃′g,iβ̂1, for

β̂1 :=

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i xg,i

 ,
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and ˙̄xg,[i] = ˜̄xg,[i] − w̃′g,iβ̂2, with

β̂2 :=

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i x̄g,[i]

 .

are residuals from auxiliary within-group regressions. We are again only concerned with the

numerator.

Let ẍg,i := x̃g,i − w̃′g,i β1 and ¨̄xg,[i] := ˜̄xg,[i] − w̃′g,i β2 be the deviations of x̃g,i and ˜̄xg,[i] from their

respective population linear projections on urn-specific intercepts and the covariate vector wg,i.

Then

β̂1 = β1 +

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i ẍg,i

 ,

β̂2 = β2 +

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃g,i ¨̄xg,[i]

 ,

are the conventional sample-error representations that follow from re-arrangement. Hence, some
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elementary re-arrangement gives

r∑
g=1

ng∑
i=1

x̄g,[i] ẋg,i =
r∑

g=1

ng∑
i=1

x̄g,[i] (ẍg,i − w̃′g,i(β̂1 − β1))

=

 r∑
g=1

ng∑
i=1

x̄g,[i] ẍg,i


−

 r∑
g=1

ng∑
i=1

x̄g,[i] w̃
′
g,i

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃′g,i ẍg,i


=

r∑
g=1

ng∑
i=1

ẍg,i (˜̄xg,[i] − w̃′g,i β̂2)

=
r∑

g=1

ng∑
i=1

ẍg,i (¨̄xg,[i] − w̃′g,i (β̂2 − β2))

=

 r∑
g=1

ng∑
i=1

ẍg,i ¨̄xg,[i]


−

 r∑
g=1

ng∑
i=1

ẍg,i w̃
′
g,i

 r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

−1 r∑
g=1

ng∑
i=1

w̃′g,i ¨̄xg,[i]


=

r∑
g=1

ng∑
i=1

ẍg,i ¨̄xg,[i] + op(
√
r).

Here, the last equality is a consequence of

1

r

r∑
g=1

ng∑
i=1

w̃g,iw
′
g,i

p→ lim
r→∞

1

r

r∑
g=1

E

( ng∑
i=1

w̃g,iw
′
g,i

)
,

where the probability limit is a well-defined and invertible matrix, together with the observation

that

1

r

r∑
g=1

ng∑
i=1

(w̃g,i ẍg,i) +Op(r
−1/2),

1

r

r∑
g=1

ng∑
i=1

(
w̃g,i ¨̄xg,[i]

)
+Op(r

−1/2),

where we have used E(w̃g,i ẍg,i) = 0 and E(w̃g,i ¨̄xg,[i]) = 0, which hold by basic properties of linear

projection.

With the representation

r∑
g=1

ng∑
i=1

x̄g,[i] ẋg,i =
r∑

g=1

ng∑
i=1

ẍg,i x̄g,[i] + op(
√
r) (A.13)
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we turn to calculating the expectation of the sum on the right-hand side, under the null. It is

useful to observe that, in the presence of covariates, the null of (conditional) random assignment

implies that

x̌g,i|wg,1, . . .wg,ng ∼ independent (αg, σ
2
g), x̌g,i := xg,i −w′g,iβ.

Further, we remark that, under the null, the projection coefficient β̂1 is a consistent estimator of

β. Indeed, it has the interpretation of an estimator of β that enforces the null. We therefore have

ẍg,i = (xg,i − xg)− (wg,i −wg)
′β = (x̌g,i − x̌g).

We may now proceed essentially as in the proof of (1.2) to calculate the bias. We find, again

using our normalization that αg = 0, that

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] ẍg,i

)
=

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] (x̌g,i − x̌g)

)

=
r∑

g=1

E0

 ng∑
i=1

ng∑
j=1

(Ag)i,j (x̌g,i − x̌g)xg,j
mg(i)


= −

r∑
g=1

E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j xg,j x̌g,k
mg(i)


= −

r∑
g=1

E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
k=1

(Ag)i,j x̌g,j x̌g,k
mg(i)


= −

r∑
g=1

σ2
g .

The transitions in this display have made use of

E0 (x̌g,i xg,j) = E0 (x̌g,i x̌g,j) + E0

(
x̌g,i w̃

′
g,j

)
β,

where

E0 (x̌g,i x̌g,j)

 σ2
g if i = j

0 if i 6= j
,

and E0

(
x̌g,i w̃

′
g,j

)
= E0

(
E0

(
x̌g,i|wg,1, . . .wg,ng

)
w̃′g,j

)
= 0.
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The urn-specific variances are estimated by

1

ng − 1

ng∑
i=1

ẋg,i xg,i,

and so the corrected covariance estimator is

r∑
g=1

( ng∑
i=1

x̄g,[i] ẋg,i +
1

ng − 1

ng∑
i=1

ẋg,i xg,i

)
=

r∑
g=1

ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

)
,

which is q̂HO
r .

From the argument above,

q̂HO
r =

r∑
g=1

ng∑
i=1

ẍg,i

(
x̄g,[i] +

xg,i
ng − 1

)
+ op(

√
r).

The remained of the proof then parallels the proof of Theorem 1.
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